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INTRODUCTION

This paper deals with a generalization of polynomial perfect splines.
Perfect splines play an important role in many optimization problems which
arise when one is dealing with the uniform norm. For example, in the
problems of n-widths [12, 17] and optimal interpolation [2,5,7, 15] in
L 00 [0, 1], perfect splines are used to describe the solutions. In another area,
Micchelli [11] has recently developed the relationship between L I

approximation and perfect splines.
We use the following definitions.

(1) A set of m functions {up... , um} C qo, 1] is said to be a weak
TchebychefT system of order m if they are independent and if for each set
0< t l < ... < tm < 1, det{u1(tj ); i,j = 1,..., m} ~ 0.

(2) A set of m functions {up..., um} C C m-
I [0, 1] is said to form an

Extended Complete TchebychefT system if for each 1~ k ~ m and each
1~ t l ~ ••• ~ tk ~ 1, det{u1(tj ): i, j = 1,..., k} > 0. This is more precisely
defined in [8, p. 5].

Let {k p ... , k r } C qo, 1] and let K(x, y) be a continuous function from
[0, 11 X [0, 11 to the reals. For each 1~ i 1 < ... < is ~ r;°< YI < ... < YI < 1, and °< t 1 < ... < ts+1< 1 define

K(t" YI) ... K(ts+ I' YI)
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We follow Micchelli and Pinkus [12] in making the following Basic
Assumptions on the functions defined above.

(1) For each set of points, 0 < YI < ... < Ym < 1, the functions
{k 1(t),... , kr(t), K(t, YI)"'" K(t, Ym)} are independent over [0, 1].

(2) kl(x),..., kr(x) form a Tchebyscheff system over (0, 1).

(3) Each determinant,

as defined above is non-negative.

(4) For arbitrary 0 < t l < ... < ts < 1; K(t p y),..., K(t p y) are linearly
independent.

For the remainder of this paper we assume all functions k(x), K(x, y)
satisfy these Basic Assumptions, unless we specify to the contrary.

If k l >0 we define the differential operator (Df)(x) == (djdx)(f(x)jkl(x».

DEFINITION. A totally positive perfect spline is any function of the form

r S flJ+l
pet) = L a[k;(t) + c L (-I)' K(t, y) dy,

[= 1 J= 1 l]
(1)

where 0 = <;0 < <;1 < ... <<;s+ 1= 1, and where k(x), K(x, y) satisfy the Basic
Assumptions.

Weare able to demonstrate in this paper that such functions are unique
with respect to interpolation. Using this uniqueness many classical results
can be extended to this broad class of functions, and some new results
involving polynomial perfect splines can be established. For example, let n
be a fixed integer greater than r, then for a given pair of numbers (t, a) and a
given set of n distinct numbers {ttf7=1 c (0,1) there is a unique pet) of the
above form where s ~ n - r such that

P(f) = a, i = 1,... ,)n.

Here a 7'= 0 and t E (0, 1) is distinct from {ttf7= I' We also develop some
extensions of this theorem for multiple zeros.

Another result that we obtain has application in n-widths. It concerns the
uniqueness of a perfect splines of the form (1) with c = 1 which alternates a
maximal number of times, [5,12,17]. Further for L 1 approximation by weak
Tchebycheff systems the results of Micchelli [11] are extended. Finally the
interpolating envelope development of Micchelli and Miranker [13] is
generalized.
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(i = I,..., n + I),

We begin this section by stating a result that can be obtained by
modifying the proof of the corresponding result in Micchelli and Pinkus
[12].

LEMMA l. For any set of constants {a p"" an}' any set of knots
O=C;O<C;I < ... <C;n-r+l= I, and any hEL oo such that yE(C;j,C;j+l)~

(-IYh(y)~O (j=0, I,...,n-r), thefunction

r I n

g(x) = .L ajkix ) +f hey) K(x, y) dy + .L ajK(x, C;j-r) (2)
j=1 0 j=r+1

has at most n distinct zeros in (0, I) in each of the following two cases:

(A)(a) For arbitrary 0 < C;I < ." < C;m < I; k1(x),..., kr(x), K(x, C;I)'"''
K(x, C;m) is a TchebychefJ system.

(b) h(y) is non-zero on a set ofpositive measure.

(B)(a) k(x), K(x, y) satisfy Basic Assumptions (I), (3) and (4).

(b) h(y) is non-zero a.e.

With respect to the existence of perfect splines which interpolate specified
data, Karlin in his basic paper [7] on this subject has proven by the use of
non-linear mapping theorems, that one can always interpolate with totally
positive perfect splines. de Boor [2] has given a short proof of Karlin's result
using linear functionals. We state this result as Theorem l.

THEOREM l. For a given set of points 0 < XI < ." < x n +I < 1 and a set
of data {Pi }7~/, there exist a l ,..., ar, c, C;j and an integer q ~ 0 such that

r [n-r- q
, ]

j~lajkix;)+c j~O (-IY(+'K(X;,y)dY =P;

where 0 = c;o < C;I < ... < C;n-r-q < C;n-r-q+ I = I, when k(x), K(x, y) satisfy
the Basic Assumptions.

LEMMA 2. Let k(x), K(x, y) satisfy the Basic Assumptions, and
furthermore let k l > 0 and DK(x, y) satisfy Basic Assumption 4, then any
perfect spline of the form:

r n-r t'+l n-r

pet) = .L a;k;(t) + c .L f K(t, y) dy + .L b;K(t, c;;),
;=1 ;=0 ,/ ;=1

(3)

where 0 = c;o < c;l < ... < c;n-r+ I = I, has at most n zeros, counting
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multiplicities up to order 2 in (0, 1) and D(P) has at most n - 1 distinct
zeros in (0, I).

Proof First consider any set: {O <YI < ... < Ys < I}. We claim that the
functions {Dk2 ,... , Dkr , DK(·, YI)'"'' DK(·, Ys)} are independent. For if not
there is a set of numbers {a 2 ,... , ar' f3 p ..., f3s}' all not zero, and a constant of
integration c such that

r s

~ a/k/ + 2: f3/K(·,yJ == ckl ·
/=2 /=1

This contradicts our basic independence hypothesis and thus the functions
generated by the differential operator D are independent. For each e > 0, let
kj£l and K1£)(., Yj) be the Gaussian Transform of k/ and K(·, Yj), respec
tively. It is well known (see Theorem 2) that the functions {k\d,..., k~,
K1£l(-, YI)'"'' KI£l(., Ys)} form an Extended Complete Tchebycheff System.
Thus by the reduction result of Karlin, Studden [8, see Eq. (1.4), p.3771,
with D.F(x) = (d/dx)(F(x)/k\d(x))

form an Extended Complete Tchebycheff System. Letting e -+ °in the above
system and applying the fact that the limit functions are independent shows
that the limit functions

form a weak Tchebycheff system. Thus Lemma I is applicable to D(P) and
hence D(P) has at most n - I distinct zeros in (0, I). Note that if P had
n + 1 zeros in (0, 1) including multiplicities up to order 2, it would follow by
Rolle's Theorem that D(P) has at least n distinct zeros in (0, I), which is a
contradiction. This completes the proof.

Remark 1. If k 1 >°and Dk2 >°and

o I 0 K(x, y)

ox Dk2(x) ox kl(x)

satisfies Basic Assumption (4) it follows in a similar fashion that P has at
most n zeros in (0, 1) counting multiplicities up to order three, and D(P) has
at most n - I zeros in (0, 1) counting multiplicities up to order two.

LEMMA 3. If P(t) of the form (1) has n zeros, 0< t l < ... < t n < 1, then

K (1,...,r, C;p.oo, C;n -r) °
t l ,..·, t r , t r+ I , .. ·, tn > .
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Remark 2. If, for example, k( >° (and Dk2 > 0), then the above
inequality is valid in the case where at most two (three) t; are permitted to be
the same. The proof of these results employs Lemma 2 and proceeds
analogously to the derivation of Lemma 3.

THEOREM 2 (Uniqueness of Interpolation). Consider any perfect spline
of the form

r n-r C
P(t) = L a1k;(t)+c* L (-1); L+'K(t, y)dy,

;= 1 ;=0 t{
(4)

(5)

where 0< et <et < ... <e:- r + 1 = 1; c* *0. If, for a given set
0< t l < < tn+1< 1, there is a subset of n of these t's, say,°< t;1 < < t;n < 1, such that

K (1,...,r, et,..·, e:-r) >°
ti" ti2 ,· .., tin

then the following proposition is valid: For any perfect spline of the form

(6)

where 0= eo <el < ... < ~s+ 1 = 1 and where s ~ n - r, which agrees with P
on the set {td7;1!, we have

P=Q.

Proof. We first calculate the Jacobian of pet) with respect to the
parameters {at, c*, en. Let

( ) - ap(t) -2( V+I * ( .1'*)
gr+J t = aer - -1) c K t, 'oj

ap(t) n-r (tj+l
gn+l(t)=a-*= L (-I)1)j K(t, y)dy.

c J=O tj

(i = 1,..., r),

(j=I,...,n-r),

We claim that the Jacobian J of pet) at the points {td7;11 is non-zero; that is,
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If this claim is not valid there is a non-zero vector (b I"'" bn + I) eRn + I so
that the function

n+1

g(t) == L bt gt(t)
/=1

has zeros at the {ttf7~ II. If bn + I #: 0, Lemma 1 states that g(t) can have at
most n zeros. Thus bn + I = 0. But in this case our hypothesis (5) implies that
g(t) cannot vanish at {tj }j=1' which is a contradiction. HenceJ*O.

We now consider the Gaussian Transform of P and Q for I€I > 0. For any
f, the Gaussian transform f(o) off is formally,

1 .00 (_(Z-t)2)
f(t; €) = f(o)(t) = J27r I€I L

oo
exp 2€2 f(z) dz

with .r°)(t) = f(t). For any set °< Yl < ... < Ys < 1, it is well known [8,
p. 15 J that for each I€ I>° the set of s + r functions {k~<) ,..., k~<),

K«)(., YI)'"'' K«)(-, Ys)} form an Extended Complete Tchebycheff System.
In addition as € ~ 0, the functions and their partial derivatives converge
uniformly to the corresponding k t or K(·, Yj) on any compact subset of (0,1)
up to the degree of smoothness that the limit function possesses. From the
linear properties of the Gaussian Transform it follows that:

Assume there is a Q of the form (6), different from P, such that
P(tt) = Q(tt) (i = 1,..., n + 1). In order to arrive at a contradiction consider
the system of n + 1 non-linear equations in n + 1 unknowns (which are the
components of A):

r n-r. tj+l

FiA ;€)==?= a/kj<)(tj)+c ?= (-1)1 f K«)(tj,y)dy=aj ,
1=0 j=O t)

j=I,...,n+l, (8)

where A = (a l , ... , a r , ~I , ... , ~n-r' c). Note that when € = °and aj = P(tj )

U= 1,..., n + 1), we have a solution A *= (at, ... , a:, ~t,..., ~:-r' c*) to (8).
Now consider a = (a l , ... , an + I) and € as parameters in this non-linear
system. Since the Jacobian of the system J * ° at € = 0, A = A * and
a = a* == (P(tt), ..., P(tn+t» we can invoke the implicit function theorem to
show that there is a neighborhood.v of (a*, 0) c R n

+
2 such that

(I) For each (a, €) in V there exists a solution A(a, €) of (8) with the
last component c(a, €) #: 0.
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(II) There is a number d > 0 with the property that for each
A(a,e)E V

sup Ip(El(A(a, e), t) - Q(t)1 ~ d.
tE[O.I]

Here p(£) (A (a, e), t) is the perfect spline of the form (7) with the parameter
set A (a, e).

For lei> 0 consider the Gaussian Transform Q(£)(t) of Q(t). By the
continuity properties of the Gaussian Transform, there is an eo >0 such that

(a) le'l < eo ~ (Q(£')(t l ),... , Q(E')(tn+ I)' e') E V.

(b) There is a number p > 0 such that Ie'l <eo and

(a,e)E V~ max IQ(El(t)-p(El(A(a,e),t)l~p.
tE[O.I)

Hence for 0 < lei < eo,

Q(£) (tj ) = p(ElA(Q(£) (t I)"'" Q(El (tn +I»' e), tj )

and

(j = 1,..., n + 1)

i = 1,... , n,

Call the function on the right above plEl. It is easy to see that p(El - QlEl has
the form

r I

(p(£) - Ql£»(t) = L a;klEl(t) +f hey) K(El(t, y) dy,
i=1 0

where hey) has at most n - r sign changes. According to Lemma 1,
p(£) - Q(El can have at most n zeros which is a contradiction. Thus

P=Q. I

COROLLARY 1 (Fundamental Theorem of Algebra for Totally Positive
Perfect Splines). For a set of n distinct points 0 < t 1 < ... < tn < 1 and a
pair of real numbers (t, a), where t E (0, 1) - {t i 17= I and a *- 0, there exists
a unique P of the form (4) such that

pet;) = 0,

pet) = a.

Proof The existence of such an interpolating pet) of the form (4) with
knots {c;;* 1 follows from Theorem 1 where c* *- O. (Since k l , ... , k r form a
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Tchebycheff system, it follows that for all such solutions, the coefficient
c* 1=- 0.) By Lemma 3.

K (1,..., r, et,et,...,e:-r ) >0
t l ,... , tr , .. ·, tn

Hence the Uniqueness of Interpolation Theorem applies and P(t) is the
unique interpolating perfect spline of the form (6). I

Remark 3. If k l > 0, one can with the help of Remark 1, extend the
Fundamental Theorem of Algebra to the case where we allow zeros of
multiplicity two. Indeed with appropriate hypothesis (which are valid in the
classical problem of polynomial perfect splines) these results can be extended
to even .higher multiplicities. For example, if one assumes in addition that
Dk2 > 0 we can allow zeros up to multiplicity three.

As another application of this theorem let us recover Karlin's elegant
result [7] on interpolating oscillatory data with polynomial perfect splines.
To be specific let r=m~2, ki(t)=t i- I

, i=I,...,m; K(t,y)= (t-y)~-1,

and let {atl7:11 be a set of given data associated with a set of n + 1 points
{ttl7:11, where O~tl < t2 < ... < tn+1 ~ 1. Further let [at, ..·, as] be the
(s -l)th ordered divided difference of the data {atl:=t with respect to the
points {ttl:= I'

COROLLARY 2 (Karlin, [71). If m ~ n - m and for some s, where
n~s~O, [a/,at+I'...,a/+s][at+I'...,at+s+l] <0 (i=I, ...,n-s) then there
exists a unique perfect spline P with at most n - m knots which interpolates
the given data, that is P(tt) = at i = 1,..., n + 1.

Proof According to Theorem 5.1 of [Karlin, 7] there is a perfect spline
with exactly n - m distinct knots which interpolates the given data. Further
if 0 <el < ... <en - m < 1 are the knots of P,

(a) tv <ev < tv+m +l'

Now let

v = 1,..., n - m.

v= 1,..., n -m.

v=n-m+ 1,...,m.

(b) Xv = tv'

(c) Xv = tv+1'

From (a) and (b),

(d) Xv = tv <ev' v = 1,..., n - m.

Further from (a) and (c) and the fact that m> n - m

v= 1,..., n - m.
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Combining (d) and (e) we have

(f) Xv < C;v <x v + m' v= 1,...,n-m.

But as is well known [6, p. 503], the above inequalities imply

K (1,...,m, C;l ,..., C;n-m) > O.
x1,,,,,xn

Thus Theorem 2 is applicable and P is the unique interpolant. I

L 1 ApPROXIMATION

In this section we consider the problem of approximating a function
J E C[0, 1] in the L 1 norm by elements of an m-dimensional weak
TchebychefT subspace U of C(O, 1] with a basis Up... , um' Specifically we
characterize the element u E U which minimizes

1

Ilf - ull ==t If(x) - u(x)1 dx.

Following Micchelli we define the convex cone of U,

1
[ (

1,..., m,f ) \
K(U)= fECO,l):O~Yl<'''<Ym+l~);U ~O

Y\>· .. , Ym, Ym+l

and for each set 0 < Yl < ... <Ym < 1, let

Here

(
1,... , m )

U = det{u/(Yj)}'
Yl,"" Ym

THEOREM 3. For each sequence 0 < Y1 < ... < Ym < 1, assume that
U[Yl"'" yml contains a basis for R m, then there is a unique set of nodes
0= C;o < C;l < ... < C;s < C;s+ 1= 1, where s ~ m such that

(i = 1,..., m). (9)

Further s = m.

Proof. We can apply the Hobby-Rice Theorem [4] or Theorem 1, to
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demonstrate that a set of knots gj lj= I exist which satisfy (9). Micchelli !11 ]
has proven that s = m and that

(
1,..., m) °U *.el ,· .. , em

A simple modification of Theorem 2 with the correspondence,

yields the fact that the gd~ I are unique. I
Combining the above theorem and Micchelli !11, Theorem 1] we have:

THEOREM 4. Assume that for each sequence °< y I < '" < y m < 1,
U[ Y I , ... , YmI contains a basis for R m. Then there is a unique set of points°<e,< ... < em < 1 such that for every f E K( U), the element u E U which
is closest to f in the L , norm is completely determined by the conditions

(i = 1,.." m).

Micchelli [111, has obtained the above result using a stronger set of
hypotheses.

OSCILLATORY PERFECT SPLINES

In this section we establish the uniqueness of the totally positive perfect
spline which alternates maximally over [0, 1]. Our theorem extends the
known classical result for polynomial perfect splines [5]. One is referred to
the papers of Karlin, Micchelli, Pinkus, and Tihomirov !5, 7, 12, 17], for the
relationship of this problem to certain extremal problems in L 00 !O, 1].

THEOREM 5. Assume r> 2, k, = 1 and (d/dx) k 2 > 0, and

satisfies Basic Assumption 4, then there is exactly one perfect spline of the
form

r n-r lj+l

pet) = L a/k/(t) + L (-IY f K(t, y) dy,
/=1 j=O ~
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where 0 = eo < el < ... < en- r+1= I so that for some E> 0,

(I) -E~P(t)~E, tE [0, 1].

(II) There exist n + I points 0 <XI < ... <xn+1< I such that
equality occurs in (I) only at the {x;}. Further P(Xi ) = (_1)I-r+IE,
i = 1,..., n + 1.

Proof The existence of such an alternating perfect spline has been
established in [12]. Let p* be such an alternating spline with parameters
A *= (at, ..., ar*, et,..., e:- r), E = E*, and alternating points 0 ~ xt < ... <
x:+l ~ 1. Note that by Lemma 2, xt = 0 and x:+ 1 = 1. Consider the system
of 2n equations in 2n unknowns

(11)(i = 2,..., n).

r n-r f'J+1
peA, xJ == I ajk/xl) + I (-I)j K(xp y) dy

j= I j= 1 lJ

= (_1)I-r+IE (i = I,... , n + I), (10)

~ peA, x) Ix=x/ = 0

Here the 2n unknowns are A = (a 1''''' ar, ep...,en-r) c Rn, 0 <x 2 < ... <
xn < 1 and EcR. Further eo==O==x l and en-r+1 == 1 ==xn+l • Note that p*
yields a solution of (10) and (11) and by Remark I, d2/dx 2P*(xt) *-0
(i = 2,..., n).

Thus by the implicit function theorem for each i in (11) we can solve for XI
as a function of A in a neighborhood of A *. We restrict ourselves from now
on to this neighborhood and deal exclusively with system (10) where each Xi

is a function of A. Taking into account the fact that d/dx peA, xl(A» = 0,
the Jacobian of (10) with respect to the parameters A and E is

(_I)I-r
(_1)2-r

J=

We want to show J *- O. Hence we can factor out powers of 2 and -I from
the columns of J and subtract the ith row from the i + 1 row (i = 1,..., n); to
obtain a determinant j on which we can equivalently test whether the
Jacobian is non-zero. Expanding j by the first column, applying the
fundamental theorem of calculus n times, and using the multilinear properties
of a determinant we find that

640(34(2-6
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.... .Xn + I ~X2
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~ X n ~ XI
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x

where K<')(Z, e) = oK(z, e)/oz, kj')(z) = dkiz)/dz.
In the text of the proof of Lemma 2 we have shown that each cofactor of a

element in the last column of j is non-negative and indeed by Remark 2 for
z; = x; (i = 2,..., n) each such cofactor is strictly positive. Hence j *- 0 and
equivalently J *- O. Now as in the Uniqueness of Interpolation Theorem we
can use the smoothing parameter e in the implicit function theorem to
establish the existence of an extended totally positive solution, p<E) (t), to (10)
and (11) in a neighborhood of e=O, E=E*, A=A* and {x;=Xn7~2'

Here

and

p<E)(X:E» = (_I);-r+'E<E)

d'P<E)
--(x:E»=O

dx

(i = 1,..., n + 1),

(i = 2,... , n - 1)
(12)

r n-r tho)

p<d(t) = I a:dk:d(t) + I (_1); J 1+1 K<d(t, y) dy.
k~1 ;~O l~')

Now if there were another perfect spline Q which satisfied (I) and (II) we
could proceed as before to find a Q<E) which satisfies (12). By continuity for
small IeI>0, Q<E) i= p<d. It is easy to see that pIE) - Q<E) can be written in
the form

r 1

(p<E) - Q<E»(t) = L W)k:E)(t) +f h<E'(y)K<E)(t, y)dy,
;~I 0
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where hld (y) has at most (n - r - 1) sign changes. But from the alternation
properties of pl') and Ql'), the difference has at least n zeros. This
contradicts Lemma 1. Thus P == Q and the proof is complete. I

Remark. If k I >°and Dk2 > 0, a proof following the outline of the
above theorem can be constructed to show that there is exactly one P which
satisfies (I) and (II) where ±E is replaced by ±Ek(t) in (I) and E is
replaced by Ekl(Xi ) in the ith equation in (II.)

COROLLARY 3. The perfect spline of Theorem 5 is the unique perfect
spline (of the specified form) of minimum norm.

Proof Let P(t) be the unique perfect spline described in Theorem 5 with
/P(xi)1 = E, i = 1,..., n + 1. Let Q(t) be another perfect spline of the specified
form with maxtE\O.I) IQ(t)j = E. We will show Q(t) == P(t).

We first note that there at most n + 1 points where Q(t) assumes the value
E. This follows since Q'(t) can vanish at most n - 1 times.

If Q(t) assumes the value E at exactly n + 1 points, then by Theorem 5,
Q(t) == P(t).

On the other hand, we now show that it is impossible for Q(t) to assume
the value E at fewer than n + 1 points.

If this happened there is at least one point xk' where IP(xk)1 = E > IQ(xk)l.
It then follows, as in the proof of Theorem 3 that the Jacobian

c(P(XI),..·, P(Xk_ I), P(xk+I ), ... , P(xn»
c(a l , ... , ar , el ,... , en - r )

k(l)(z ) ... Kl()(z ): )
2 ( l''on-r

k(l)(z ) ... K(I)(z ): )
2 n n'~n-r

Since the Jacobian does not vanish, it follows that there exists a perfect
spline P(t) of the specified form satisfying

IPI(xi)1 > IQ(x;)1

sgn PI(Xi) = -sgn PI(xi+ I)

(i= 1, ,n + 1).

(i = 1, , n).

Hence for sufficiently small 6 the smooth function PI,(t) - Q,(t) has at
least n zeros. As mentioned in the last paragraph of the proof of Theorem 5,
this is a contradiction. Hence the Corollary follows. I
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Micchelli has communicated to us an elegant proof of the uniqueness
theorem of Karlin [5] on oscillating L-Splines.

THE INTERPOLATING ENVELOPE

In the last several years there has been a great deal of interest in obtaining
upper and lower bounds for functions for which a prescribed derivative is
bounded and whose values are known over a specified point set. The basic
results in this area are due to Micchelli and Miranker [13], see also [1] and
[3]. These results were based on the polynomial spline kernel,
K(x, y) = (x - y)'t-- I

, and its extension on L-splines [5]. These kernels have
the property that they are totally positive [6, p. II]. Micchelli and Pinkus
[12, example 4] have recently given an interesting example of a totally
positive kernel which is not covered by these previous results. In this section
we extend these results to complete totally positive kernels; that is kernels
which satisfy our Basic Assumptions.

THEOREM 6. Assume in Basic Assumption 3 that

is always positive. Consider a function of the form

r .1

Q(x) = L a;k;(x) + I hey) K(x, y) dy,
;=1 -0

(13)

where h E L 00 [0, I] and m < hex) <M a.e. for x E [0, 1]. Thenfor the given
points 0 <XI < ... <x n < 1 there exist two unique functions

r 1

PM = L b;k;(x) +r hM(y) K(x, y) dy,
i= I - 0

r 1

Pm(x) = L clk;(x) +J hm(y) K(x, y) dy
1=1 0

such that

(a) hMand hm are step functions each with exactly n - r jumps.

(b) Each of these step functions satisfies

(h(x) - m)(h(x) - M) = 0 a.e.

(c) hM(x) = M in some interval beginning at zero.

(14 )

(15)
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(d) hm(x) = m in some interval beginning at zero.

(e) PM(x/) = Q(x/) = Pm(x/), i = 1,..., n.

Proof Consider the compound kernel

( ) (
1,... , r, Y)/ ( 1,..., r )J x, Y =K K .

XI ,••• , x" X XI , ••• , x,
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Thus J(x,+/, y) is a linear combination of, or rather a linear operator on, the
K(xj , y). Applying this operator to a function Y = PM of the form (14) with
the data, «x/, Q(x/»; we arrive at the system,

I

1/=t hM(y)J(x;, y)dy (i=r+ 1,... ,n), (16)

with 1/ a linear combination of the Q(xj ).

By Sylvester's determinant identity [6, p.3] for 0 < YI < yz < ... <
Yn-, < 1,

K ( 1,..., r, YI'"'' Yn -, )

J (X'+I'''''Xn _,) = Xl'"'' X"X,+I'"'' X n

Y,,· .. , Yn-, K ( 1,..., r )

XI"'"X,

Thus {J(x" y),...,J(xn _" y)f form an n - r dimensional TchebychefT
system. By a theorem of Krein, see [14, Theorem F], there is an hM which
yields a solution to (16) and which also satisfies (a), (b) and (c). Since
{k/(x)fr=1 form a Tchebycheff system, a unique set of coefficients {btlr=,
exist for which

Letting

, 1

Q(xj ) = L b/k/(xj ) +f hM(y) K(xj , y) dy
i= 1 0

(j = 1,..., r).

, 1

PM(x) = L b/k/(x) +f hM(y) K(x, y) dy,
/=1 0

we see that PM satisfies for r + 1~ i ~ n,

K ( 1,...,r'PM )

XI'"'' x"Xi

K ( 1,..., r )
XI'"'' X,

(
1, , r, Q )

flh ( ) ( )d _ K X" , x"x/
M Y J x/' Y y - --'--"---'---'-'-

o ( 1'00" r )
K XI'"'' x,
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Solving for PM(xJ on the left and Q(xJ on the right, one finds that

Thus PM also satisfies (e). If there were another function P of the desired
form, then PM - P could be represented as

k 1

PM(x) - P(x) = ~ c;k;(x) +J h(x) K(x, y) dy,
;=0 0

where h(x) has at most (n - r - 1) sign changes and h(x) is non-zero on a
set of positive measure. But PM - P has at least n zeros. This contradicts
Lemma 1, case A. Thus PM is unique. A similar procedure shows that there
is a unique Pm with the desired properties. I

DEFINITION. A function P is called an (m, M) perfect spline with s knots
0< YI < ... < Ys < 1 if P can be written in the form

r .1

P(x) = ~ a;ki(x) + J h(y)K(x, y)dy,
;= I 0

where h is a step function with s jumps occurring at YI ,..., Ys ' Further if
O=Yo, and I=Ys +l; xE[Yo'YI]=>h(x)=m; xE[YI'Y2]=>h(x)=M,
etc.

Clearly any (m, M) spline P(x) with a fixed number of knots, say, n - r
can be parametrized using the vector A = (a) ,...,oa" YI ,..., Yn-r)' We indicate
this by letting P(x) == P(A, x).

Note that

oP(A,x)

oy;
[h(yn - h(ynJ K(x, y;) = (_I)i+l(m -M) K(x, y;),

where of course (-, +) refer to lower and upper limits, respectively. Further

Hence the Jacobian determinant J of P(A, x) with respect to the
components of A over the set of n points 0 <Xl < ... <x n < 1, has the form

J (
1,... , r, YI"'" Yn- r )=cK ,

. XI'"'' x r , x r+ I , ... , x n

where c= (_I»)/2In-r)(n-r+)(m _My-r.

(17)
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LEMMA 4. If h E L C1J is non-zero a.e. and further has exactly n - r sign
changes occurring at 0 < ~I < ... < ~n-r < 1, and if the function

r .1

g(x) = L a[k[(x) +J h(y) K(x, y) dy
i=1 0

has n distinct zeros 0 <x I < '" <X n < 1 then

K( 1,...,r'YI,...,Yn-r) 0
XI'"'' X r , xr + I , ... , xn > .

Proof The method of proof of Lemma 7.2 of [12] applied to Lemma 1,
Case.B carries over the the present situation.

LEMMA 5. Consider any 0 <XI < ... <x n < 1; m <M and any Q of the
form (13) with the corresponding h satisfying m < h <M. Then any perfect
(m, M) or (M, m) spline P with s knots 0 < YI < .,. <Ys < 1, s ~ n - r,
which interpolates Q over the point set {xd7= I has the properties that
s = n - rand

(
1,..., r, YI'"'' Yn-r) 0K > .

XI'"'' x r ' x r+ I , ... , xn
(18)

Proof If hp and hQ are the "h functions" corresponding the P and Q,
respectively, it is easy to see that hp - hQ has at most s sign changes and
does not vanish on a set of positive measure. But P - Q has at least n zeros;
hence, by Lemma 1, Case B, hp - hQ has n - r sign changes, i.e., s = n - r.
The result now follows from Lemma 4. I

THEOREM 7. Under the hypothesis of Lemma 5, there exists at most one
(M, m) perfect spline PM' with the number of knots not exceeding n - r,
which interpolates Q over the point set {xd7=1 . Indeed PM has exactly n - r
knots. A similar result holds for an (m, M) perfect spline Pm'

Proof Assume that there is an (M, m) perfect spline PM with the desired
properties. By Lemma 1, Case B, PM has n - r knots. Let
A * (* * * * *) b h . d . h= a l , ... , ar ,..., ar , YI ,... , Yn- r e t e parameter vector assocIate WIt
PM' By Lemma 5,

(19)

Assume there exists another (M, m) perfect spline P(x) with at most n - r
knots which interpolates Q over the point set. By Lemma 1" Case B, P has
exactly n - r knots.
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Proceeding as in the proof of Theorem 2, we find by using the implicit
function theorem that the perturbed Gaussian Transform of PM(x) can be
made to agree with the Gaussian Transform of P(x) at xi' i = 1,..., n. By
Lemma 1 this shows PM(X) = P(x). The result for Pm(x) is proved
similarly. I

LEMMA 6. Assume in Basic Assumption 3 that

is always positive and that h(y) is a non-zero step function with at most
n - r sign changes. Then any function of the form

r 1

P(x) = L aiki(x) +f h(y)K(x, y)dy
i=1 0

has at most n zeros including multiplicities in (0, 1).

Proof See Proposition 3.1 [16].

THEOREM 8. Consider O=XO<Xl<",<xn<Xn+l=I; QoER n and
m <M. Then there exists a unique (M, m) perfect spline PM and a unique
(m, M) perfect spline Pm each with at most n - r knots such that for any Q of
the form (13) with the corresponding h satisfying

m < h <M a.e.

and Q(x) = (Q(x l ),... , Q(xn)) = Qo' the following propositions are valid:

Pm and PM have exactly n - r knots.

(_1)r+i(PM(X) - Q(x)) >0,

(_1)r+i(Pm(x) - Q(x)) < 0,

Xi <x < x i+1 (i = 0, 1, , n),

Xi <X < xi+ 1 (i = 0,2, , n),

(20)

(21 )

(22)

Proof We employ a perturbation technique involving the Gaussian
Transform. Consider a strictly decreasing sequence {e v } converging to zero.
For each v, let PMv(x) be the unique (M, m) perfect spline guaranteed by
Theorem 7 of the form

r 1

PMv(x) = L aiv(k(x; eJ) +f hv(Y) K(x, y; eJ dy
1=1 0

which has exactly n - r knots and for which PMix) = Q(x; eJ. If hQ is the
"h function" associated with Q(x) (and this with Q(x; eJ), it is easy to see
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that hv - hQ is non-zero a.e. and has exactly n - r sign changes. Using a
perturbation technique, one can show PMv(x) - Q(x; e) has n simple zeros in
(0, 1). Hence the zeros of PMV(X) - Q(x; ev ) are simple occurring at
0< XI < ... < X n < 1. Thus by the generalized sign properties of perfect
splines [6, pp. 232-2331, PMV(X) - Q(x; ev ) must satisfy (20).

We claim that the set {a i,' }7~ I ~~ I is bounded. If not we can arrive at the
situation that for some set of {b;l~~l' where L~~llb;l >0

r

) b.k.(x.) = 0
....... I l J
i~1

(j = 1,..., n),

which contradicts that assumption that k l , ... , k r form a TchebychefT system.
Thus the set of coefficients is bounded. Hence by going to a subsequence
(which we do not relabel), we can find sequences {PM"} and {Q(·,e v )} such
that there is a perfect spline P(x) with the properties:

(1) The h(x) associated with P(x) is a step function with at most n - r
jumps satisfying (h(x) - M)(h(x) - m) = 0 a.e.

(2) limv -+ oo liP - PMvl1 = 0, where II . II is the uniform norm over [0, 1].

(3) P(x) = limv -+ oo Q(x, ev) = Q.
(4) By Lemma 1, Case B, PM - Q= 0 only at the interpolating points

and thus P satisfies (20).

By Theorem 7, h has exactly n - r jumps, and P == P,w In a similar fashion
we can show PM also satisfies (21) and (22). I

COROLLARY 4. If we weaken the hypotheses of Theorem 3 to allow
m ~ h ~ M, the conclusions of Theorem 8 are still valid except that Pm and
PM have at most n - r knots.

Proof. Consider a strictly decreasing sequence {Mv} converging to M
and a strictly increasing sequence {m v } converging to m. By Theorem 8 there
is an (Mv ' mv ) perfect spline PM which satisfies (20) and (22). Using an
argument similar to the one applied in Theorem 8, we can find a limit (M, m)
perfect spline PM which satisfies (20), (22) and which has at most n - r
knots. Clearly the same technique can be used to find Pm. I

For polynomial perfect splines, Theorem 8 and its corollary were first
proven by Micchelli and Miranker [13] and elaborated upon by Micchelli
and Rivlin [14]. Another proof was given by de Boor [1]. The result was
recently rediscovered by Lee and Goodman [31. In these papers some of the
x;'s were permitted to coincide. Our results can be extended to permit this by
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letting the {kd~=1 satisfy additional conditions. For example, if k l > 0, we
can allow at most two x;'s to agree; if in addition

we can permit three x;'s to agree and so forth.
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